4、机床的结构形态对温升的影响
在机床热变形领域讨论机床结构形态,通常指结构形式、质量分布、材料性能和热源分布等问题。结构形态影响机床的温度分布、热量的传导方向、热变形方向及匹配等。
(1)机床的结构形态。在总体结构方面,机床有立式、卧式、龙门式和悬臂式等,对于热的响应和稳定性均有较大差异。例如齿轮变速的车床主轴箱的温升可高达35℃,使主轴端上抬,热平衡时间需2h左右。而斜床身式精密车铣加工中心,机床有一个稳定的底座。明显提高了整机刚度,主轴采用伺服电动机驱动,去除了齿轮传动部分,其温升一般小于15℃。
(2)热源分布的影响。机床上通常认为热源是指电动机。如主轴电动机、进给电动机和液压系统等,其实是不完全的。电动机的发热只是在承担负荷时,电流消耗在电枢阻抗上的能量,另有相当一部分能量消耗于轴承、丝杠螺母和导轨等机构的摩擦功引起的发热。所以可把电动机称为一次热源,将轴承、螺母、导轨和切屑称之为二次热源。热变形则是所有这些热源综合影响的结果。
一台立柱移动式立式加工中心在Y向进给运动中温升和变形情况。Y向进给时工作台未作运动,所以对X向的热变形影响很小。在立柱上,离Y轴的导轨丝杠越远的点,其温升越小。
该机在Z轴移动时的情况则更进一步说明了热源分布对热变形的影响。Z轴进给离X向更远,故热变形影响更小,立柱上离Z轴电动机螺母越近,温升及变形也越大。
(3)质量分布的影响。质量分布对机床热变形的影响有三方面。其一,指质量大小与集中程度,通常指改变热容量和热传递的速度,改变达到热平衡的时间;其二,通过改变质量的布置形式,如各种筋板的布置,提高结构的热刚度,在同样温升的情况下,减小热变形影响或保持相对变形较小;其三,则指通过改变质量布置的形式,如在结构外部布置散热筋板,以降低机床部件的温升。
(4)材料性能的影响:不同的材料有不同的热性能参数(比热、导热率和线膨胀系数),在同样热量的影响下,其温升、变形均有不同。
二、机床热性能的测试
1、机床热性能测试的目的
控制机床热变形的关键是通过热特性测试,充分了解机床所处的环境温度的变化,机床本身热源及温度变化以及关键点的响应(变形位移)。测试数据或曲线描述一台机床热特性,以便采取对策,控制热变形,提高机床的加工精度和效率。具体地说,应达到以下几个目的:
(1)机床周围环境测试。测量车间内的温度环境,它的空间温度梯度,昼夜交替中温度分布的变化,甚至应测量季节变化对机床周围温度分布的影响。
(2)机床本身的热特性测试。尽可能地排除环境干扰的条件下,让机床处于各种运转状态,以测量机床本身的重要点位的温度变化、位移变化,记录在足够长的时间段内的温度变化和关键点位移,也可用红外线热相仪记录各时间段热分布的情况。
(3)加工过程测试温升热变形,以判断机床热变形对加工过程精度的影响。
(4)上述试验可积累大量的数据、曲线,将为机床设计和使用者控制热变形提供可靠的判据,指出采取有效措施的方向。
2、机床热变形测试的原理
热变形测试首先需要测量若干相关点的温度,包含以下几方面:
(1)热源:包括各部分进给电动机、主轴电动机、滚珠丝杠传动副、导轨、主轴轴承。
(2)辅助装置:包括液压系统、制冷机、冷却和润滑位移检测系统。
(3)机械结构:包括床身、底座、滑板、立柱和铣头箱体和主轴。
在主轴和回转工作台之间夹持有铟钢测棒,在X、Y、Z方向配置了5个接触式传感器,测量在各种状态下的综合变形,以模拟刀具和工件间的相对位移。
3、测试数据处理分析
机床热变形试验要在一个较长的连续时间内进行,进行连续的数据记录,经过分析处理,所反映的热变形特性可靠性很高。如果通过多次试验进行误差剔除,则所显示的规律性是可信的。
主轴系统热变形试验中共设置了5个测量点,其中点1、点2在主轴端部和靠近主轴轴承处,点4、点5分别在铣头壳体靠近Z向导轨处。测试时间共持续了14h,其中前10h主轴转速分别在0~9000r/min范围内交替变速,从第10h开始,主轴持续以9000r/min高速旋转。可以得到以下结论:
(1)该主轴的热平衡时间约1h左右,平衡后温升变化范围1.5℃;
(2)温升主要来源于主轴轴承和主轴电动机,在正常变速范围内,轴承的热态性能良好;
(3)热变形在X向影响很小;
(4)Z向伸缩变形较大,约10m,是由主轴的热伸长及轴承间隙增大引起的;
(5)当转速持续在9000r/min时,温升急剧上升,在2.5h内急升7℃左右,且有继续上升的趋势,Y向和Z向的变形达到了29m和37m,说明该主轴在转速为9000r/min时已不能稳定运行,但可以短时间内(20min)运行。

(来源:未知)
上一篇:电动阀操作原理及应用场合介绍
